
Discovering the Laws of Physics with
Artificial Intelligence

Iwona Kotlarska
Andrej Jakovljević

Marijana Davitkova

Mentor: Pedro Zuidberg Dos Martires

Abstract

Artificial intelligence is a new and revolutionary aspect of computer science
that is being rapidly developed and implemented in the real world. It is the ability
of a computer or a machine to mimic human behavior and intelligence through
a certain algorithm. The way artificial intelligence works is, it upgrades itself
based on previously obtained data and information using various methods and ap-
proaches, such as statistics, probability theory, clustering, and networks. The goal
of our project is to find mathematical laws of physics that describe a physical
process. The way our project functions is similar to evolution. Firstly, in order
to describe a physical process, a population of formulas is randomly produced,
which are ranked and compared and reduced to the better portion. That portion is
mutated: new and better formulas are obtained. However, in order for all this to
function, it requires a set of data, according to which the algorithm should sync
its work. The method deployed in our project is a supervised learning method,
namely symbolic regression. Our project produced the wanted answer, and even
exceeded our expectations. It could be improved if it were run on a faster and
better computer. Furthermore, this project opens the doors to further extend the
application of the developed algorithm to fields of science other than physics.

1 Introduction
Ever since the earliest days of humankind, people have been trying to observe nature
around them. They had searched for patterns and laws to explain the processes oc-
curring daily, and thus science was born. At first, science was done with the help of
human senses, sight, touch, smell, hearing, taste. Later on, tools were invented to ease
the work and yield greater precision, and people used theories, experiments and simu-
lations to satisfy their thirst for knowledge. Nevertheless, as the pace of technological
advancement has taken up, more and more complex challenges have arisen, and the
need for a new mean of doing science has appeared. That need is met by artificial
intelligence.

1



What we wanted to achieve with this project is to recreate a simpler example of arti-
ficial intelligence, a program meant to rediscover the laws of physics, more specifically
the basic equations of motion, from a set of data provided to it.

Artificial intelligence Artificial intelligence (AI) is an area of computer science that
deals with giving machines the ability to seem like they have human intelligence, or
put more simply, the power of a machine to copy intelligent human behavior. It is the
ability of a machine to upgrade its knowledge on its own.

Symbolic regression Symbolic regression is an algorithm used in the programming
of artificial intelligence that is inspired by natural selection in evolution. The computer
is given a population of functions, which are compared, ranked and reduced, something
like survival of the fittest. The remaining functions are crossed over and mutated. This
process is repeated until the wanted formula is discovered.

2 Methodology
In order to see our project through, we had to split the whole procedure in pieces, and
tackle every problem independently. For faster and simpler conduct, we split the work
between us.

2.1 Data
We obtained the data to fuel our algorithm from two different sources

• Simularions: We wrote computational simulations of physical systems that re-
produce data obtained in actual physical experiments.

• Experiments: We build a simple pendulum experiment and recorded the data
by filming the experiment

In our project, we fed data to the computer that was obtained by our computer sim-
ulation. The simulation produces data that corresponds to data obtainable in the real
world. We had two kinds of simulations, with and without an actual physical exper-
iment. For the one with physical experimentation, we made a pendulum, which we
recorded and processed. The other simulation was with generating random data by a
program which feeds it to the main algorithm.

2.2 Algorithm
After we had obtained the data, we needed an algorithm to process the data. We found
the Symbolic Regression [3] to be a neat solution, and we implemented it, so that it
develops our equations into clean formulas fitting the previously obtained data. The
algorithm was split into several functions that fulfilled their purpose and gave us the
desired result.

2



3 Symbolic Regression
Symbolic regression is our algorithm, which does all the work in finding the proper
equation. As we have mentioned before, it can be compared to evolution, as it functions
similarly to it. Symbolic regression is made up of 7 steps.

Figure 1: Diagrammatic representation of the steps in symbolic regression.

3.1 Collecting data
The algorithm references the data produced in the simulations/experiments.

3.2 Calculating the derivatives
We numerically calculate partial derivative for every pair of variables, in order to use
them in the creation of combinations during the following stage, the generating of the
symbolic functions.

∆x

∆y
≈ dx

dt

/
dy

dt
(1)

where t is time, and x and y arbitrary variables.

3.3 Generating symbolic functions
Since the algorithm has to start from somewhere, it initially guesses the equations,
therefore, in the first generation, the functions are random, and create the population of
equations. As the algorithm loops, and new generations are formed, the newly gener-
ated functions are not random, but modified versions of the best initial functions. The

3



latter process is made possible by mutation and crossing over. Below we show different
examples of functions from the population:

15× x(t) + 75× v(t)3 + 0.45× a(t)− 12.85 = 0 (2)

3.45× sin(x(t)) + a(t)2 = 0 (3)

45× x(t) + 12.54× sin2(v(t)) + 0.8× a(t) = 0 (4)

3.4 Deriving symbolic partial derivatives
In order to compare the functions to one another, we calculate the symbolic derivatives
of pairs of variables for each candidate function.

δx

δy
=
δf

δy

/
δf

δx
(5)

3.5 Comparing of functions
Next, the algorithm compares the predicted partial derivatives with the numerical par-
tial derivatives, and selects the best equations using a certain cost function C.

C = − 1

N

∑
i

log

[
1 + abs

(
∆xi
∆yi

− δxi
δyi

)]
(6)

Furthermore, we added additional penalties for lack of variables, zero derivatives, and
the size of the function. The final C function contained those as well:

C =− 1

N

∑
i

log

[
]1 + abs

(
∆xi
∆yi

− δxi
δyi

)]
+ penalty(zero derivatives)
+ penalty(lack of variables)
+ penalty(size) (7)

After the comparison, we reduced the function population by half using natural selec-
tion, i.e. only the better half according to the C function remains.

3.6 Creating new generations
This is the part of the algorithm that loops between the creation and comparing of the
functions, going back to the third step of symbolic regression: generating symbolic
functions. Since it already has initial functions, the algorithm modifies them through
mutation (changing of one variable into another), or crossing over (combining elements
of two functions).

4



Figure 2: Process of mutation

Figure 3: Process of crossing over

5



3.7 Result
After N iterations, the algorithm breaks out of the loop, and prints out its ”best” solu-
tion, again according to the C function. The accuracy of the entire code depends on the
number of iterations, N.

4 Simulation

4.1 Deriving the equation of motion for the pendulum
In order to compare the functions, we needed their derivatives. Firstly, we have to
observe Newton’s second law of motion.

F = m× a (8)

Next, we calculate the acceleration due to gravity, which will be a function of θ.

a = −g × sinθ (9)

Furthermore, we calculate the arc length of the pendulum.

arcL = Lθ (10)

The latter redefines the acceleration formula.

d2θ

dt2
× L = a (11)

When we combine the acceleration formulas, we get the simple harmonic motion of a
pendulum.

d2θ

dt2
+
gsinθ

L
= 0 (12)

Afterwards, we solve and integrate the previous equation, and take its root, which gives
us our derivative.

T = 4

√
L

g

1√
2

∫ θ0

0

1

cosθ − cosθ0
dθ (13)

Since this equation cannot be solved in terms of elementary functions, we used the
small angle approximation.

θ ≈ sinθ (14)

We generated a data sample using the Sympy library in Python, which simulates a
pendulum with a small-angle approximation by the following equations

d2θ

dt2
= −g

l
× θ (15)

Where

6



• θ - angle of the pendulum

• g - gravitational acceleration on Earth

• l - length of the string of the pendulum

• t - time

4.2 Solving differential equations
We solved the equation of motion for the pendulum in two ways: 1) numerically , using
the Euler method and without the small angle approximation 2) symbolically and with
the small angle approximation. The output of the algorithm for both sets of data can be
compared (figure 4).

Figure 4: Plot of angle over time (blue line - without a small angle approximation, red
line - with small angle approximation)

5 Experiment
An experiment was done with a pendulum to see if the algorithm can discover the
equation of motion of the pendulum even in real-life situations, with friction and human
errors. The setup of the experiment is shown in figure 5. The ball was hung from the
wall covered in black nylon and painted in white, so that a computer visions program
could easily recognize it.

7



Figure 5: Picture which shows the setup of the experiment

After the pendulum was recorded with a mobile phone camera, the footage was
transfered onto a computer and cut into frames using Matlab [2], with the exact position
of the ball on each frame was found using image processing library sp2 in Python to
find white circles in black background (figure 6)

Figure 6: Output of the program that finds the ball and its center

Data of the position of the pendulum was then processed in Matlab. We plotted

8



the data and fit it using cubic interpolation [1]. Then, the first and second derivatives
of the position were calculated numerically (representing velocity and acceleration,
respectively, figure 7), using the following equations

vi =
xi+1 − xi

∆t
(16)

ai =
vi+1 − vi

∆t
(17)

Where a and v represent acceleration and velocity, while t is the time between two
frames in the video.

Figure 7: Fitted data of the experiment with the pendulum (position of the ball over
time)

9



6 Results

6.1 Expected results
The predicted output was a simple formula that would explain the motion that we
obtained through the aforementioned simulations. However, in order to obtain those
results, we required a greater processing power and more time, which we did not have.

6.2 Final Results
The equation which we obtained at the end was not the correct formula but it was close
enough. We may, hence, assume that given more running time, the formula might have
been found. Below we give the equation of motion obtained by our algorithm.

8× a(x) + 4× v(x) + x = 0 (18)

Therefore, our code works for one dimensional problems, and our next step would be
to extend it to more dimensions.

7 Conclusion
What we achieved was done in limited time and with limited technology. Had we had
some more time for this project, we could well have expanded it in order to tackle
two dimensional problems too, and perhaps extend it to other fields of science as well.
Another thing we would like to note is that the birth of artificial intelligence does not
mean the end of human usefulness. Artificial intelligence is but a tool in humankind’s
long and rewarding stride towards pushing the frontiers of science.

10



References
[1] URL: https://nl.mathworks.com/help/matlab/ref/spline.

html (visited on 08/17/2017).

[2] MATLAB. version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc.,
2010.

[3] Michael Schmidt and Hod Lipson. “Distilling Free-Form Natural Laws from Ex-
perimental Data”. In: Science 324.5923 (2009), pp. 81–85.

11

https://nl.mathworks.com/help/matlab/ref/spline.html
https://nl.mathworks.com/help/matlab/ref/spline.html

	Introduction
	Methodology
	Data
	Algorithm

	Symbolic Regression
	Collecting data
	Calculating the derivatives
	Generating symbolic functions
	Deriving symbolic partial derivatives
	Comparing of functions
	Creating new generations
	Result

	Simulation
	Deriving the equation of motion for the pendulum
	Solving differential equations

	Experiment
	Results
	Expected results
	Final Results

	Conclusion

