
Talk to a Flower to Become a Part of the Internet
Ivana Jovanovic, Márton Sebestény, Mario Zelić, Keoma Brun-Laguna,

Team: The Plant Whisperers
Summer School of Science S3++ 2016

Abstract—On the Summer School of Science 2016 in Požega on
S3++ camp we have been given a problem about an automated
watering system for plants. The goal of our project is to make
a completely automated system which provides water to a plant
according to its needs. We solved the problem by making a circuit
which involves a water pump and a moisture sensor that are
connected to an Arduino Nano. The Arduino Nano controls the
water pump according to the data it gets from the moisture
sensor. The produced data is sent to Raspberry Pi from where
it is displayed on a web page.

Index Terms—Smart Agriculture, Precision Agriculture, IoT.

I. OVERVIEW

Everyday, a huge amount of plants die because of lack
of attention. People go to holidays or simply forget theirs
plants due to their constant stress. There is a clear need for
an automated watering system to save those plants.

The goal of the project is to establish an automated system
that waters the plant according to its needs without any human
intervention. The whole product has three main sections: i)
the moisture measurement ii) the automated water pumping
iii) and the self-web-hosting to display the data.

The moisture sensor measures conductivity of the soil. The
more water there is, the higher the conductivity. Although, a
problem may occur if there is a high amount of metal ions
from the soil itself or accumulated over time from water.
It represents a possible problem because it can effect the
conductivity of the soil and cause a higher measurement.
It sends the analog data to the small computer capable of
processing the data and storing a small software in it.

We use an Arduino Nano, a “small, complete, and
breadboard-friendly board”1 for storing and executing our
software. The code is written in C/C++ like language. The
software in Arduino processes the data from the sensor,
determines if the value is above or under the defined limit
and enables the pump to water the plant if the value is low.
The limiting value for the pump is defined according to the
type of the plant and the type of the soil because they effect
the conductivity of the soil which is measured. The Arduino
and the pump together are powered by an external battery.

At the same time, the Arduino sends the data from the
moisture sensor to the Raspberry Pi via radio frequency. The
Raspberry Pi is a small computer similar to the Arduino but
more powerful. It has an Ethernet port for connection to the
internet. We use it as web server which stores our data and
displays it like a graph in a form of a web page. Using the
web server we can monitor the system from the distance and

1https://www.arduino.cc/en/Main/ArduinoBoardNano

Fig. 1. A plant connected to the automated watering system.

easily see the current state of the plant according to the graph.
The Raspberry Pi has it’s own power source.

Our prototype is a turn-key solution currently applicable to
personal needs. The system can water the plants in absence
of humans and keep them hydrated. The main advantages are
the facts that it does not consume a lot of energy and that the
whole product is self-contained.

II. AUTOMATED WATERING

Our automated watering system consists of two major parts:
one which is responsible for collecting data about the soil and
one which brings off the watering. The device that joins the
two parts is the Arduino Nano.

A. Measuring Moisture

To measure the soil moisture we use the following devices:
A moisture sensor2, an Arduino Nano, a 5V battery and cables
to connect them. To make the system work we use an Arduino
code (the Arduino language is based on C/C++) which controls
the other parts of the circuit.

Our sensor measures the electrical conductivity of the soil
and sends an analog signal to the Arduino Board. The sensor
we use provides analog values that can vary between 0 and
1024. If we put the sensor in the air, we get a 0 as it’s
conductivity is very low in ordinary circumstances (i.e 10

2http://www.seeedstudio.com/depot/Grove-Moisture-Sensor-p-955.html



Fig. 2. The complete system electronic circuit

to the power of -15). If we make a shortcut with a cable
between the two pins of the sensor, we get the maximum
value as the cable has negligible resistance. To calibrate the
maximum humidity we put the sensor in water and at room
temperature, this value is about 900. If we want to calibrate the
minimal humidity in our soil we need to dry it and measure
the conductivity of the dry material. Due to time limitation
we consider the minimal value to be 0. According to this data
we can calculate the relative moisture percentage of soil and
meet the plants water needs.

B. Watering System

Our watering system contains a water-pump, a transistor
(NPN), a diode, a battery and everything is connected to the
Arduino Board. We use the transistor as a switch and the
diode as a safety mechanism. Based on the data that our
sensor provides, the Arduino Nano decides (thanks to our
code) whether the plant needs water. According to that it can
close the circuit of the water pump for a certain amount of
time (by using our transistor) and make the pump push water
to the soil. If it happens, we wait for a short time so the water
can spread and then the whole process starts again. If it does
not happen, then the measurement continues.

III. DATA COLLECTION AND HOSTING

Now that the automated system for watering a plant is
completed, we want to be able to store and analyze the
data. To do so, we establish a communication between the
Arduino Nano and the Raspberry Pi. Once that is done, we
start modifying the software for the Raspberry Pi which writes
the received data into a file.

A. RF Communication

Our automated system is controlled by an Arduino Nano
which activates the pump according to the information it
receives from the moisture sensor. To improve the performance
of our system and find the optimal settings, we decide to save
the data on a server and analyze it. To communicate between
the Raspberry Pi and the Arduino Nano, we are using a radio

transmitter and a receiver. Our radio transmitter and receiver
use the 433 MHz frequency to send and receive data. We use
an existing solution3[1] to receive the data that we then adapt
to save both time and value into a comma-separated value
(CSV) file.

To effectively transfer the data, we use the “on/off keying”
mechanism. “On/off keying” is a type of digital modulation
which represents data as a series of 1-value and 0-value that
represent presence or absence of the carrier wave. Another
type of modulation is analog modulation which can be ampli-
tude modulation (AM) and frequency modulation (FM). Our
Arduino Nano is equipped with a transmitter which either
emits or does not emit waves which are recognized by a
receiver connected to the Raspberry Pi as 1-value and 0-value.
When the server receives the data, it translates the series of
binary digits into useful information which represents the data
sent from the Arduino Nano. After that, the time when the data
was received is recorded and the data is saved.

By using radio transmission of the information, we are
exposed to different types of interferences. When waves are
travelling from the transmitter to the receiver, there is a prob-
ability that some data can be lost. To decrease the probability
of data loss, we send the same data three times in a very small
timeframe (¡1s). After the data is sent, Raspberry Pi usually
receives multiple packets of data that was sent. When the same
data is received more than once, we only store it once. We pick
which data to store by modifying the existing solution (i.e
WiringPi default RFSniffer code). We set conditions which
need to be satisfied. The conditions are: the value of the data
must not be 0, and the time the packet was received must not
be the same as the time the last packet was received.

B. Hosting

After the database is set up, we display the collected data
on a web page. The web page needs to contain a graph which
represents the relative amount of moisture of soil over time
and some additional information about our project. We decide
to use Python to create a web server, HTML for the content
and CSS for the style.

IV. REPRODUCIBLE RESEARCH

One of the main goals of this project is to show the
importance of reproducible research. This is a kind of research
which can be repeated after the initial research. Currently,
this is a big problem in the science community since a lot
of research is being done, but not all of them can be repeated.
This is due to unspecified procedures which were used during
the research and/or insufficient information about the used
equipment and the result of the research.

One of the most popular ways of beginning the reproducible
research process is using a version control system. A version
control system is a system which is used for remembering all
versions of the research. It remembers the difference between
two versions of the same part of the research so the changes

3https://github.com/ninjablocks/433Utils



Fig. 3. The final self-contained prototype

are visible and easily readable. Saving all versions of the
research contain data of successes and failures. This way the
same mistakes cannot be made again since there are already
notes on how they happened and how they could be stopped.
Version control systems encourage originality in a way that
users have the option of “branching”. Branching is an event
which happens after the research is split into more parts and
users concentrate on different aspects of the problem. This
is a useful concept since every branch can access the data
which was collected before branching, but cannot see the
information other branches have collected. Not all research
can use a version control system because of the amount of
data, complexity of the procedures or the type of research.

On our project, we used Git as a version control system on
which we saved all files connected to the project4. Every time
we change something, we send the changes we made in our
repository on Github (”push”) so the current version is saved.
When the changes are monitored, we can see what was the
problem and how we solved it.

V. CONCLUSION

In the Summer School of Science (S3++) our team got
an opportunity to take part in a practical, Computer Science
project. Our main purpose was to set up an automatic watering
system with which we succeeded. Meanwhile we learnt a
lot about programming, electronics, Computer Science in
general and also about many other fields of science (including
Physics and Chemistry). We assembled an all-in-one automatic
watering system and documented in a step-by-step approach
so that it can be reproduced by anyone.

Further improvements include: i) adding additional tempera-
ture and humidity sensors, ii) analysing the interaction between
the different metrics, iii) collecting data about different plants
iv) adding a user friendly interface.

ACKNOWLEDGMENTS

We would like to gratefully thank the organizers of the
Summer School for their help and constant support.

4https://github.com/keomabrun/S3 2016

We want to thank Maja for her presence and advices during
the water testing process. We also want to thank Davor and
Boris for their experience sharing in electronics.

REFERENCES

[1] GPIO Interface library for the Raspberry Pi., http://wiringpi.com/pins/
[2] The Basics of Cryptography, https://fisher.osu.edu/∼muhanna.1/pdf/

crypto.pdf
[3] Internet History, http://www.computerhope.com/history/internet.htm
[4] The Internet. Jessica Mckellar, https://speakerdeck.com/pyconslides/

the-internet-by-jessica-mckellar


