
Automatic Speech Recognition
Some SIRIous business

Ana Crnkovic, Karlo Loci,
Katarina Petrović, Mario Zelić

Abstract— This project shows how to make a simple speech
recognition program in one week time. Firstly, speech is
separated from noise. Afterwards, the word recording is matched
to an HMM of a word it most likely represents. These HMMs are
learned from data recordings. The results depends on the
features we use. When using features depends only on amplitude
and frequencies, the results are poor. We also use professional
features which give us good results. We change our data set
division by leaving out recordings of one team member and then
we would use them for testing. Interestingly, the results were
better with lower pitched test voices.

I. INTRODUCTION

A. Problem description and motivation

Since its beginning, speech recognition software has been a
not-so-rare topic in scientific magazines. The basic idea behind
speech recognition is analyzing a recorded sound signal,
detecting where the speech is in the signal and recognizing a
word out of that signal. Although the technology and software
behind it are already pretty advanced, their implementation in
improving the efficiency of doing daily tasks is limited
regarding its capabilities. Today, there are many speech
recognition apps such as “SIRI” on IOS, “Skyvi” on Android
and “Cortana” on Windows Phone.

B. Project Goals

That is where our project comes in. Our goal is to create
simple yet useful speech recognition software that will use the
sound signals, analyze them and create text out of them. We
use HMMs (Hidden Markov Models) to calculate which word
is being said. Hidden Markov Model represents probabilities
of a letter repeating itself or advancing to the next letter. It can
be used to calculate how likely it is that a word is said with a
certain speech signal. We compare the sound signal to HMMs
that are trained on other sound signals previously recorded.
The word of the most likely HMM is displayed.

II. BACKGROUND

A. Sound

A sound is a vibration of particles trough some medium. It
is characterized by amplitudes and frequencies. Amplitude is
the difference between extreme values (peaks and valleys)
while frequency is the number of occurrences of a repeating
event per unit time.

B. Speech

Humans exhale air while speaking. Air passes between two
vocal folds which sets them into vibration, making a sound
which passes through our vocal tract to the mouth. Going
through our vocal tract, some frequencies are filtered based on
the shape of our vocal tract making the final sound a
superposition of waves of those frequencies. Therefore any
speech, because of the way sounds are summed, is a periodic
wave in the Amplitude – Time graph.

C. Hidden MarkovModels

A Markov model is a model in which each state depends
on the state before that. Figure 1 gives an example of a
Markov model.

Figure 1 Markov Model

In the recording of the word “c c c c a a a a a t t t”, it is
easy to know which word it means since we know the
phonemes said in each window and they are obviously correct,
that is they make a word with meaning.

In the application of speech recognition, one is not sure of
which phoneme is pronounced in each state. The computer
could get the following sequence of windows: “C c g c a a a a
t t t” which no longer satisfies the Markov model. A human
would recognize the mistake due to the knowledge of the
language and replace “c g c” with the more likely “c c c”.

A Hidden Markov Model solves this problem. The
phonemes in our model are then unknown or hidden. This is
why this kind of model is also called the Hidden Markov
model (or also known as HMM).

Given a sequence of windows one can calculate how likely
it is that the model will produce the sequence. One can
calculate the transition probabilities and the Gaussian
parameters from examples (recordings).

More details one can find in Rabiner’s tutorial [1].

III. METHODS

Figure 2 Automatic Speech Recognition

A. Speech Detection

First we have recorded our signal using a microphone and
computer. After plotting it on a graph, we ended up with a
function, looking like the Figure 3.

Signal was plotted on a plot amplitude of a wave signal
over a time-domain. After plotting function it is needed to
smooth it. The function is smoothed using windowing.
Windowing a function basically means dividing a function
into a final number of small pieces which can overlap. The
sound signal is windowed and the squares of average
amplitude of each window are calculated. After plotting that
on a graph amplitude over a time you get something similar to
the Figure 4. When we got that function, we chose the
threshold by comparing the speech and background parts and
calculating some average value between the amplitudes. That
is how we distinguished between the speech and silence
(background noise).

Figure 3 Original speech signal

Figure 4 Smoothed speech signal

B. Features

Before actual feature extraction, we need to preprocess the
window. The first type of preprocessing is using a Hamming
window. If you use a Hamming window you basically switch
the rectangle shape to the shape showed on a Figure 5. The
reason you do this is because then you avoid adding
unnecessary frequencies to your sound signal, therefore you
get a better quality.

Figure 5 Hamming window
The second preprocessing is called pre-emphasis.

Pre−emphasis (Figure 6) is a type of a filter inside a frequency
domain used to increase the amplitude of higher frequencies
and decrease the amplitudes of lower ones. We use
pre−emphasis to more or less equalize the signal inside a
frequency domain, also our brain does the same kind of
filtering to equalize the frequencies of our most sensitive
hearing range (1000−5000 Hz) to make the signal
understandable.

Figure 6 Pre-emphasis filter
Features represent a specific characteristic of a window

which can easily distinguish it between others and make it a
significant one. In this part of a method, the best feature is
found and used for future measurements.

Figure 7 Left: A good feature. Right: a bad feature.
On Figures 7 there are examples of a good feature and a

bad one, respectively given. The feature is better if an overlap
area of the two Gaussian functions (vowels, for examples E
and A) is smaller. It is concluded that the best feature was
maximum frequency of a window. The features which have
been tried as well are maximum amplitude, average amplitude,
standard deviation, minimal amplitude

C. Word Recognition

Here in this part, Hidden Markov Models were made for
each word from a database. We calculated the probabilities for

each path in model (we learned our HMM). After calculating
the probabilities, the focus was on finding the probability that
from a specific HMM model you will be able to get a particular
word which has previously been recorded. After calculating
this for each HMM, the maximum probability was found and
that is basically our word. These are some methods which are
used in this project:

1) The method for learning a HMM. In this method,
program takes words from a database and first sets up a
transition matrix. The transition matrix, in the beginning, can
only give you information about the connectivity in a graph (a
HMM is a directed graph), when there is a path between the
two vertexes, the value of a matrix field is 0.5, only on a field
transition_matrix (n-1,n-1), the value is 1.0. After that it’ll
calculate the probabilities for the next letter (vertex) and
transition matrix will change.

2) Method for making a feature matrix using our best
feature (maximum frequency), and some professional features
such as Linear Predictive Coding and Cepstrum coefficients.

3) Method for classifying a word, aka finding the best
HMM model (calculates the probabilities that an hmm model
suits our word)

IV. RESULTS

In order to test the software, we used a database with
ten words. For each word, the database contains several
different recordings from different people. The data is divided
in training data and testing data.

A. Training and Testing Data

Training data is used so the software can learn the HMMs
for every word in the database. Testing data is used for
software testing so that we can evaluate the software and
determine if it should be changed or improved. They cannot
contain the same recordings.

B. Experiments

The baseline (the minimal percentage of correct answers
needed so that the software would do better than random
guessing) is determined by the probability of one picking the
right word from the whole database. Our database had 10
words, so the baseline is 10%.

Table 1 Feature experiments
Test results Our

feature
s

LPC Cepstrum LPC
+Cepstrum

Preprocessin
g

31.33% 76.00% 82.67% 86.00%

No
preprocessing

41.33% 54.67% 21.33% -----

If you look at the table, you can see that the combination of
the LPC and Cepstrum with preprocessing gives the biggest
percentage of correct answers because they are oriented
towards the frequency domain, and our features are oriented

towards both time and frequency domain.

Table 2 Multiple Speakers
Leave one out Percentage of correct answers

Karlo 54.54%
Mario 53.89%

Katarina 31.33%
Ana 29.89%

In a second experiment we test with putting in the training
data of three people from our team, while the testing data was
from the fourth man/woman.

V. DISCUSSION

With the project, we have confirmed that speech
recognition is a very useful software which has many
advantages and much more applications in the world.

A. Good Features

Finding features of windows is the most important part of
the speech recognition software (beside HMMs) because it
gives back a broad spectrum of data which is different for all
the windows, but the main look of them is similar. That is why
it is important to use good features since they make sure that
the software extracts precise data which can be used later for
the HMMs.

The first time the software was tested, the features which
were used were the ones we came up with and we did not use
preprocessing of the sound so we got the results which are
much higher than the baseline. Implemented LPC and
preprocessed windows return much better results. This is
because of the nature of the LPC which is based on the vocal
tract and the frequency of voice.

B. Preprocessing

Preprocessing is a procedure which cleans the frequency
domain by applying pre-emphasis and the Hamming tool
which were discussed earlier in the report. Preprocessing the
window is important before you want to extract features like
LPC and Cepstrum since they are based only on the frequency
domain. By preprocessing, the time domain is altered so the
features we came up with score lower, near the baseline.
Without preprocessing the features, which we came up with,
actually give better results because the features are in
frequency domain as well as in the time domain. LPC and
Cepstrum do not score better than in the preprocessed
windows.

C. Multiple Speakers

The results of “leave one out” vary from 29.9% to 54.54%.
Results which women in our team got, were lower than the
results from the men. We believe that is because of the
different frequencies of male and female voices.

VI. CONCLUSION

We have developed software that records sound,
detect speech from it and recognizes what word it is based on

its features such as maximum amplitude, average amplitude
etc.

We recorded several words, made a database of
HMMs out of them and compared the word that is being said
to the database. Then we compared the words we recognized
to the actual words being said and got our percentages of
correct guesses from them.

From our results you can see that male voices get
higher percentage of correct guesses than female voices. We
do not know why this is, but we think that the pitch of the
voice and quality of microphones we used play a role in it.

All in all, this software can be used to make our
communication through electronic devices easier by replacing
visual communication (textual) with our most natural one,
vocal.

REFERENCES

[1] Rabiner, Lawrence R. "A tutorial on hidden Markov models and selected
applications in speech recognition." Proceedings of the IEEE 77.2
(1989): 257-286.

	I. Introduction
	A. Problem description and motivation
	B. Project Goals

	II. Background
	A. Sound
	B. Speech
	C. Hidden MarkovModels

	III. Methods
	A. Speech Detection
	B. Features
	C. Word Recognition
	1) The method for learning a HMM. In this method, program takes words from a database and first sets up a transition matrix. The transition matrix, in the beginning, can only give you information about the connectivity in a graph (a HMM is a directed graph), when there is a path between the two vertexes, the value of a matrix field is 0.5, only on a field transition_matrix (n-1,n-1), the value is 1.0. After that it’ll calculate the probabilities for the next letter (vertex) and transition matrix will change.
	2) Method for making a feature matrix using our best feature (maximum frequency), and some professional features such as Linear Predictive Coding and Cepstrum coefficients.
	3) Method for classifying a word, aka finding the best HMM model (calculates the probabilities that an hmm model suits our word)

	IV. Results
	A. Training and Testing Data
	B. Experiments

	V. Discussion
	A. Good Features
	B. Preprocessing
	C. Multiple Speakers

	VI. Conclusion

