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ABSTRACT 
Extrasolar planets are planets located outside the solar system. There are different methods of 
finding exoplanet candidates and confirming their existence, but the most successful one is 
transit photometry. It uses data concerning the relative brightness of a star to find out whether a 
planet is transiting in front of its disk and determine some of the planet’s properties, for example 
its orbital period. A huge amount of this data is obtained by telescopes and can be processed 
much more efficiently by machines than by humans [1]. This is why we developed a neural 
network that uses the transit method to get some information about the planet from the 
telescope-obtained data. 
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I. INTRODUCTION 

There are many reasons why we are searching for extrasolar planets. Detecting 
exoplanets and learning more about them can, for instance, improve our understanding of 
planetary systems and their formation. Finding exoplanets in the habitable zone is also the first 
step to finding extraterrestrial life.  

As we have eight planets in our solar system, scientists have suspected the existence of 
extrasolar planets for a long time but had not been able to make any confirmed detections until 
the end of twentieth century. Early extrasolar planetary discoveries were based on radial 
velocity measurements, which use the shift in the spectrum of a star caused by the Doppler 
effect to measure changes in the star’s velocity due to the gravitational pull of a planet, but 
today we discover the majority using transit photometry. Nowadays, space telescopes reduce 
noise caused by distortions of light when passing through the atmosphere, which is one reason 
why we have been able to detect and confirm 3360 extrasolar planets so far, 2740 of which 
using the transit method [2]. 

Since a planet transiting in front of a star periodically causes a small change in its 
brightness, the dip in brightness can be represented with a graph known as the light curve. 



Considering the exponential increase of computing power in the last few decades and 
since there was a lot of progress in artificial intelligence, it only makes sense to use computers 
and AI to process the telescope data and discover exoplanets.  

In this paper, we explain how we first simulated a planetary system and a transit to get 
the training data for a neural network that can determine the ratio of the planet’s and the star’s 
size and the distance between them from the brightness-data of the star. 

I. METHODOLOGY 

Our goal was to make a functioning machine learning program, or more precisely, a 
neural network and train it to analyse light curves. In order to work properly and accurately, 
machine learning programs require a lot of data to train. We had to make a program that can 
simulate transits so we could feed generated data into our neural network and after that use it to 
get parameters of planets using real transits. 

 First step to creating our simulation program was to simulate a simple orbit of a planet 
around a star. We made the orbits, stars and planets perfectly circular to keep it simple. Also to 
make it simple, we didn't make any planet inclinations and just made the planet pass over the 
exact center of the star. Using that orbit, first we calculated how much of the star the planet is 
covering. Since the systems are very far from us, we didn't have to take the distance between 
the planet and the star into account. We started making graphs of transits by assuming the stars 
were uniformly bright across surface of their disk. We made graphs out of Numpy arrays in 
which we stored the numbers that represented the amount of light the sun is outputting at any 
given moment. We did the calculations as if they are circles in a 2D plane and used the formula 
for circle intersection when it was a partial intersection. When it was a full intersection, we 
subtracted the area of the planet from the area of the star. 

 

where r and R represent the radius of the planet and the star respectively, d is the distance 
between the centers and A is the intersecting area. 

Then we had to take limb darkening into account. Limb darkening is a phenomenon that 
explains why and how stars are not uniformly bright. The farther away a point on the star is from 
the center, the darker it is. Since we didn't understand the mathematics needed, we split the 
area of the star into a finite amount of rings as an approximation (Fig. 1.). We split it into rings 



because the effect of limb darkening is 
the same for every point that is the 
same distance from the center. We 
used the quadratic limb darkening law 
[3] to calculate the coefficient that 
describes how surface brightness 
changes as a function of distance away 
from the center of the disk. 

F i r s t , w e c a l c u l a t e d t h e 
maximum amount of light the star 
outputs when there is no intersection. To approximate the amount of light the planet is blocking 
when a transit is in progress, we calculated the darkening coefficient for the middle point of the 
intersecting area. We assumed that coefficient applied to the whole area in transit and used it to 
calculate the amount of light blocked. After that we subtracted the maximum amount of light by 
the amount the planet is blocking. Now we could simulate a correct transit graph. Due to the fact 
that real data is afflicted by intrinsic noise from the telescope or natural variation in the star’s 
brightness, we added random noise using the normal distribution, so that smaller errors are 
much more common than bigger errors. 

After that, we simulated thousands of different random orbits for the neural network. We 
made an interval of numbers for each of the parameters for the orbit. We generated random 
numbers that were in that interval. We simulated 50 000 different transits and used 70 percent 
of the data for training and the other 30 percent for testing. 

For the neural network we used Theano and Keras [4]. Theano is a library that allows us 
to make a neural network and Keras is a library that simplifies the creation of neural networks. 
Before starting the neural network, all data has to be normalized, which means that the overall 
average is 0, meaning that most of the numbers are in the interval between -1 and 1. We had to 
normalize our data since we used a pre-built neural network which was optimized for that kind of 
data, but in general, there are many advantages to working with normalized data. 

After that we had to decide on the number of layers and nodes. We stuck with two output 
nodes for only two out of four parameters for now. We didn't do more since it's harder to make a 
neural network accurate the more output layers there are. We also made a dropout layer to 
prevent overfitting, which means that the neural network gets accustomed to the training data 
and does not perform very well with different data. Neural network algorithms are optimized for 
numbers of nodes that are powers of two, but there is no predefined approach to finding the 
right number of hidden nodes that works well, which is why we used trial and error to find that 
128 nodes in the hidden layer works the best for us. 

Figure 1. Depiction of the rings used to approximate the 



I. RESULTS 

Using a Python program, we simulated 
light curves for a planet of a set size (Fig. 2.). It 
first produced graph shown in Fig. 2. a), with a 
flat line where real life examples show a curve. 
Our program assumed the star to be uniform 
across its entire surface, which is why the 
transiting planet would block the same amount 
of light as long as its whole area was in front of 
the star. This would not suffice, which is why 
we took limb darkening, a phenomenon further 
explained in Methodology, into account. The 
modified program returned a more satisfactory 
graph displayed in Fig. 2. b). Fig. 2. c) shows 
the graph with added noise, as explained in 
Methodology. These light curves proved the 
accuracy of our simulated data. 
 We fed the newly generated data into a 
neural network described in Methodology and 
compared the parameters it returned to their 
predicted values. This gave us the error 
distribution, which allowed us to test the neural 
network’s accuracy. Fig. 3. shows three different 
histograms, each of which plotted the error 
distribution for a particular window of system 
parameters (Table 1.) used while generating 
data for the network to use. The results can be 
seen in Table 2. The parameters we used to 
describe the simulated systems were planet to 
star ratios, the ratios between the planet’s and 
the star’s radius, and the semimajor axis, the 
planet’s distance from the star.  

The error distribution in Fig. 3. c) and a 
median error of 2.86% and 9.62% for the 
planet-star ratios and axes respectively (Table 
2.) point to a decidedly higher level of accuracy 
when compared to Figures 3. a) and b). This is 
related to a smaller window of greater planet to star 
ratios and lesser semimajor axes. 

Figure 2. a). Transit graph without adjustment for 
limb darkening.

Figure 2. b). Transit graph with adjustment 
for limb darkening.

Figure 2. Simulated change in light output by a 
star during planetary transit.

Figure 2. c). Transit curve with adjustment 
for limb darkening and simulated noise.



Table 1. Parameters used for each of the three training sets. 

Table 2. Error distributions for three different training sets. The parameters used for each set 
correspond to those in Table 1. 

 

 
Figure 3. Error distributions for three training sets. Showing errors for planet to star ratios and 
semimajor axes. 

Set Planetary radius Stellar radius Semimajor axis

Narrow
Minimum 2.00×107 1.00×108 4.00×109

Maximum 4.00×107 2.50×108 1.00×1010

Normal
Minimum 1.00×107 1.00×108 4.00×109

Maximum 6.00×107 5.00×108 4.00×1010

Wide
Minimum 4.00×106 1.00×108 2.00×109

Maximum 8.00×107 1.00×109 1.00×1011

Errors

Normal Wider Narrow

Planet-star 
radius ratio Axes

Planet-star 
radius ratio Axes

Planet-star 
radius ratio Axes

Average 21.26% 34.24% 90.05% 53.29% 4.65% 12.61%

Median 8.11% 22.24% 25.50% 28.79% 2.86% 9.62%

Figure 3. b). Wide 
distribution.

Figure 3. a). Normal 
distribution.

Figure 3. c). Narrow 
distribution.



II. DISCUSSION 

The different distributions of errors point to a correlation between the accuracy of the 
result and the parameters of the system. The simulated data seemed less sensitive to random 
noise when the dips in brightness were greater, which was directly related to greater planet to 
star ratios and lesser semimajor axes. Higher sensitivity to random noise leads to less accurate 
predictions of planetary parameters, meaning the neural network is currently better at predicting 
the properties of an extrasolar planetary system with greater planet to star ratios and lesser 
semimajor axes. 
 What we have done so far leaves a lot of areas unfinished and open to improvement. 
While we have set up a strong base for a successful neural network, there is still a lot of work to 
be done to improve its accuracy and overall functionality. Furthermore, all the orbits we 
simulated were circular and had an inclination of zero degrees. Using elliptical orbits would 
further improve accuracy and simulating orbits with different inclinations would increase sample 
size and real life usability a lot because inclination is almost never zero in real life. The usage of 
calculus instead of our ring model to implement limb darkening would increase accuracy as well. 
In addition, our neural network needs to be tested and further trained using real instead of 
simulated data. 
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